193 research outputs found

    Interannual climate variability seen in the Pliocene Model Intercomparison Project

    Get PDF
    Following reconstructions suggesting weakened temperature gradients along the Equator in the early Pliocene, there has been much speculation about Pliocene climate variability. A major advance for our knowledge about the later Pliocene has been the coordination of modelling efforts through the Pliocene Model Intercomparison Project (PlioMIP). Here the changes in interannual modes of sea surface temperature variability will be presented across PlioMIP. Previously, model ensembles have shown little consensus in the response of the El Niño–Southern Oscillation (ENSO) to imposed forcings – either for the past or future. The PlioMIP ensemble, however, shows surprising agreement, with eight models simulating reduced variability and only one model indicating no change. The Pliocene's robustly weaker ENSO also saw a shift to lower frequencies. Model ensembles focussed on a wide variety of forcing scenarios have not yet shown this level of coherency. Nonetheless, the PlioMIP ensemble does not show a robust response of either ENSO flavour or sea surface temperature variability in the tropical Indian and North Pacific oceans. Existing suggestions linking ENSO properties to to changes in zonal temperature gradient, seasonal cycle and the elevation of the Andes Mountains are investigated, yet prove insufficient to explain the consistent response. The reason for this surprisingly coherent signal warrants further investigation

    The future of coastal upwelling in the Humboldt current from model projections

    Get PDF
    The Humboldt coastal upwelling system in the eastern South Pacific ocean is one of the most productive marine ecosystems in the world. A weakening of the upwelling activity could lead to severe ecological impacts. As coastal upwelling in eastern boundary systems is mainly driven by wind stress, most studies so far have analysed wind patterns change through the 20th and 21st Centuries in order to understand and project the phenomenon under specific forcing scenarios. Mixed results have been reported, and analyses from General Circulation Models have suggested even contradictory trends of wind stress for the Humboldt system. In this study, we analyse the ocean upwelling directly in 13 models contributing to phase 5 of the Coupled Model Intercomparison Project (CMIP5) in both the historical simulations and an extreme climate change scenario (RCP8.5). The upwelling is represented by the upward ocean mass flux, a newly-included variable that represents the vertical water transport. Additionally, wind stress, ocean stratification, Ekman layer depth and thermocline depth were also analysed to explore their interactions with coastal upwelling throughout the period studied. The seasonal cycle of coastal upwelling differs between the Northern and Southern Humboldt areas. At lower latitudes, the upwelling season spans most of the autumn, winter and spring. However, in the Southern Humboldt area the upwelling season takes place in spring and the summertime with downwelling activity in winter. This persists throughout the Historical and RCP8.5 simulations. For both the Northern and Southern Humboldt areas an increasing wind stress is projected. However, different trends of upwelling intensity are observed away from the sea surface. Whereas wind stress will continue controlling the decadal variability of coastal upwelling on the whole ocean column analysed (surface to 300 m depth), an increasing disconnect with upwelling intensity is projected below 100 m depth throughout the 21st Century. This relates to an intensification of ocean stratification under global warming as shown by the sea water temperature profiles. Additionally, a divergence between the Ekman layer and thermocline depths is also evidenced. Given the interaction of upwelled nutrients and microscopic organisms essential for fish growth, a potential decline of coastal upwelling at depth could lead to unknown ecological and socio-economical effects

    Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene-Pleistocene climate evolution

    Get PDF
    During the early Pliocene (roughly 4 Myr ago), the ocean warm water pool extended over most of the tropics. Subsequently, the warm pool gradually contracted toward the equator, while midlatitudes and subpolar regions cooled, establishing a meridional sea surface temperature (SST) gradient comparable to the modern about 2 Myr ago (as estimated on the eastern side of the Pacific). The zonal SST gradient along the equator, virtually nonexistent in the early Pliocene, reached modern values between 1 and 2 Myr ago. Here, we use an atmospheric general circulation model to investigate the relative roles of the changes in the meridional and zonal temperature gradients for the onset of glacial cycles and for Pliocene-Pleistocene climate evolution in general. We show that the increase in the meridional SST gradient reduces air temperature and increases snowfall over most of North America, both factors favorable to ice sheet inception. The impacts of changes in the zonal gradient, while also important over North America, are somewhat weaker than those caused by meridional temperature variations. The establishment of the modern meridional and zonal SST distributions leads to roughly 3.2 degrees C and 0.6 degrees C decreases in global mean temperature, respectively. Changes in the two gradients also have large regional consequences, including aridification of Africa (both gradients) and strengthening of the Indian monsoon (zonal gradient). Ultimately, this study suggests that the growth of Northern Hemisphere ice sheets is a result of the global cooling of Earth's climate since 4 Myr rather than its initial cause. Thus, reproducing the correct changes in the SST distribution is critical for a model to simulate the transition from the warm early Pliocene to a colder Pleistocene climate

    Tropical cyclone genesis across palaeoclimates

    Get PDF
    Tropical cyclone genesis is investigated for the Pliocene, Last Glacial Maximum (LGM) and the mid-Holocene through analysis of five climate models. The genesis potential index is used to estimate this from large scale atmospheric properties. The mid-Pliocene and LGM characterise periods where carbon dioxide levels were higher and lower than pre-industrial respectively, while the mid-Holocene differed primarily in its orbital configuration. The number of tropical cyclones formed each year is found to be fairly consistent across the various palaeoclimates. Although there is some model uncertainty in the change of global annual tropical cyclone frequency, there are coherent changes in the spatial patterns of tropical cyclogenesis. During the Pliocene and LGM, changes in carbon dioxide led to sea surface temperature changes throughout the tropics, yet the potential intensity of tropical cyclones appears relatively insensitive to these variations. Changes in tropical cyclone genesis during the mid-Holocene are observed to be asymmetric about the Equator: genesis is reduced in the Northern Hemisphere, but enhanced in the Southern Hemisphere. This is clearly driven by the altered seasonal insolation. Nonetheless, the enhanced seasonality may have driven localised effects on tropical cyclone genesis, through changes to the strength of monsoons and shifting of the inter-tropical convergence zone. Trends in future tropical cyclone genesis are neither consistent between the five models studied, nor with the palaeoclimate results. It is not clear why this should be the case

    Comparing the impacts of Miocene–Pliocene changes in inter-ocean gateways on climate: Central American Seaway, Bering Strait, and Indonesia

    Get PDF
    Changes in inter-ocean gateways caused by tectonic processes have been long considered an important factor in climate evolution on geological timescales. Three major gateway changes that occurred during the Late Miocene and Pliocene epochs are the closing of the Central American Seaway (CAS) by the uplift of the Isthmus of Panama, the opening of the Bering Strait, and the closing of a deep channel between New Guinea and the Equator. This study compares the global climatic effects of these changes within the same climate model framework. We find that the closure of the CAS and the opening of the Bering Strait induce the strongest effects on the Atlantic meridional overturning circulation (AMOC). However, these effects potentially compensate, as the closure of the CAS and the opening of the Bering Strait cause similar AMOC changes of around 2 Sv (strengthening and weakening respectively). Previous simulations with an open CAS consistently simulated colder oceanic conditions in the Northern Hemisphere – contrasting with the evidence for warmer sea surface temperatures 10–3 million years ago. Here we argue that this cooling is overestimated because (a) the models typically simulated too strong an AMOC change not yet in equilibrium, (b) used a channel too deep and (c) lacked the compensating effect of the closed Bering Strait – a factor frequently ignored despite its potential influence on northern high latitudes and ice-sheet growth. Further, we discuss how these gateway changes affect various climatic variables from surface temperature and precipitation to ENSO characteristics

    Ratcheting up ambition on climate policy

    Get PDF
    The historic Paris Agreement aims to constrain the peak increase in global mean temperature to 1.5 °C, or at least well below 2 °C. Every country has committed to device their own “nationally determined contributions” towards this target. These contributions are only proscribed for the coming 10-15 years with a regular reassessment of them against the global target. Here we use a global climate-economy model to explore consequences of differing levels of ambition during these reanalysis. We find that without substantially increased ambition the probability of avoiding 2 °C of warming is marginal. We present several plausible future trajectories that significantly increase the probability of avoiding 2 °C, but are unable to keep global temperatures below 1.5 °C. We advocate countries engage in the reassessment process soon and with high ambitions as catastrophic climate change can effectively be ruled out by such actions

    Impact of global SST gradients on the Mediterranean runoff changes across the Plio-Pleistocene transition

    Get PDF
    This work explores the impact of the development of global meridional and zonal sea surfacetemperature (SST) gradients on the Mediterranean runoff variability during the Plio-Pleistocene transition,about 3 Ma. Results show that total annual mean Pliocene Mediterranean runoff is about 40% larger thanduring the preindustrial period due to more increased extratropical specific humidity. As a consequenceof a weakened and extended Hadley cell, the Pliocene northwest Africa hydrological network producesa discharge 30 times larger than today. Our results support the conclusion that during the Pliocene, theMediterranean water deficit was reduced relative to today due to a larger river discharge. By means ofa stand-alone atmospheric general circulation model, we simulate the separate impact of extratropicaland equatorial SST cooling on the Mediterranean runoff. While cooling the equatorial SST does not implysignificant changes to the Pliocene Mediterranean hydrological budget, the extratropical SST coolingincreases the water deficit due to a decrease in precipitation and runoff. Consequently, river dischargefrom this area reduces to preindustrial levels. The main teleconnections acting upon the Mediterraneanarea today, i.e., the North Atlantic Oscillation during winter and the “monsoon-desert” mechanism duringsummer already have a large influence on the climate of our Pliocene simulations. Finally, our results alsosuggest that in a climate state significantly warmer than today, changes of the Hadley circulation couldpotentially lead to increased water resources in northwest Africa

    Extreme UK rainfall and natural climate variability: combining models and data

    Get PDF
    The return periods for extreme events are estimated from observational datasets. Often those datasets are relatively short in comparison to timescales of natural climate variability; potentially introducing a systematic bias into the extreme estimates. Here we combine observations with global climate models to show that this bias is statistically insignificant for the case of extreme UK-wide rainfall estimates. This is unlikely to hold for other locations and spatial scales, yet the methodology we have developed provides a simple approach to quantify the bias for other cases

    The role of orbital forcing in the Early Middle Pleistocene Transition

    Get PDF
    The Early Middle Pleistocene Transition (EMPT) is the term used to describe the prolongation and intensification of glacial-interglacial climate cycles that initiated after 900,000 years ago. During the transition glacial-interglacial cycles shift from lasting 41,000 years to an average of 100,000 years. The structure of these glacial-interglacial cycles shifts from smooth to more abrupt 'saw-toothed' like transitions. Despite eccentricity having by far the weakest influence on insolation received at the Earth's surface of any of the orbital parameters; it is often assumed to be the primary driver of the post-EMPT 100,000 years climate cycles because of the similarity in duration. The traditional solution to this is to call for a highly nonlinear response by the global climate system to eccentricity. This 'eccentricity myth' is due to an artefact of spectral analysis which means that the last 8 glacial-interglacial average out at about 100,000 years in length despite ranging from 80,000 to 120,000 years. With the realisation that eccentricity is not the major driving force a debate has emerged as to whether precession or obliquity controlled the timing of the most recent glacial-interglacial cycles. Some argue that post-EMPT deglaciations occurred every four or five precessional cycle while others argue it is every second or third obliquity cycle. We review these current theories and suggest that though phase-locking between orbital forcing and global ice volume may occur the chaotic nature of the climate system response means the relationship is not consistent through the last 900,000 years
    corecore